Hippocampal Lesions can Enhance Discrimination Learning Despite Normal Sensitivity to Interference From Incidental Information
نویسندگان
چکیده
Spatial properties of stimuli are sometimes encoded even when incidental to the demands of a particular learning task. Incidental encoding of spatial information may interfere with learning by (i) causing a failure to generalize learning between trials in which a cue is presented in different spatial locations and (ii) adding common spatial features to stimuli that predict different outcomes. Hippocampal lesions have been found to facilitate acquisition of certain tasks. This facilitation may occur because hippocampal lesions impair incidental encoding of spatial information that interferes with learning. To test this prediction mice with lesions of the hippocampus were trained on appetitive simple simultaneous discrimination tasks using inserts in the goal arms of a T-maze. It was found that hippocampal lesioned mice were facilitated at learning the discriminations, but they were sensitive to changes in spatial information in a manner that was similar to control mice. In a second experiment it was found that both control and hippocampal lesioned mice showed equivalent incidental encoding of egocentric spatial properties of the inserts, but both groups did not encode the allocentric information. These results demonstrate that mice show incidental encoding of egocentric spatial information that decreases the ability to solve simultaneous discrimination tasks. The normal egocentric spatial encoding in hippocampal lesioned mice contradicts theories of hippocampal function that suggest that the hippocampus is necessary for incidental learning per se, or is required for modulating stimulus representations based on the relevancy of information. The facilitated learning suggests that the hippocampal lesions can enhance learning of the same qualitative information as acquired by control mice.
منابع مشابه
Fornix lesions impair context-related cingulothalamic neuronal patterns and concurrent discrimination learning in rabbits (Oryctolagus cuniculus).
Cingulothalamic neurons develop topographic patterns of cue-elicited neuronal activity during discrimination learning. These patterns are context-related and are degraded by hippocampal lesions, suggesting that hippocampal modulation of cingulothalamic activity results in the expression of the patterns, which could promote the retrieval of context-appropriate responses and memories. This hypoth...
متن کاملAttenuation of context-specific inhibition on reversal learning of a stimulus-response task in rats with neurotoxic hippocampal damage.
Rats with hippocampal or sham lesions were trained on a stimulus-response task developed for the 8-arm radial maze. After reaching a stringent learning criterion, different context manipulations were performed. In Experiment I, the different groups were transferred to an identical radial maze in a different room to determine the context specificity of the discrimination learning. Experiment I r...
متن کاملContrasting effects on discrimination learning after hippocampal lesions and conjoint hippocampal-caudate lesions in monkeys.
Eighteen monkeys with lesions of the hippocampal region (the hippocampus proper, the dentate gyrus, and the subiculum) made by an ischemic procedure, radio frequency, or ibotenic acid were tested on a simple, two-choice object discrimination learning task that has been shown to be sensitive to large lesions of the medial temporal lobe. The monkeys were also tested on two other discrimination ta...
متن کاملContingent versus incidental context processing during conditioning: dissociation after excitotoxic hippocampal plus dentate gyrus lesions.
This experiment explored whether excitotoxic hippocampus plus dentate gyrus (HPC/DG) lesions in rats would dissociate the differential processing of contextual cues during the performance of learned associations when (1) their processing during training is incidental to successful learning or (2) the solution of a discrimination problem is contingent on their processing. A series of training st...
متن کاملCorticohippocampal contributions to spatial and contextual learning.
Spatial and contextual learning are considered to be dependent on the hippocampus, but the extent to which other structures in the medial temporal lobe memory system support these functions is not well understood. This study examined the effects of individual and combined lesions of the perirhinal, postrhinal, and entorhinal cortices on spatial and contextual learning. Lesioned subjects were co...
متن کامل